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It is well known that if investment is irreversible and uncertain, there exists a benefit to
waiting. When such benefits are taken into account, the relationship between interest
rates and investment may be quite complex. In particular, when net revenues follow a
Gaussian random walk, model investment tends to zero at both high and low interest
rates. That is, investment is a hump-shaped function of r.

1. Introduction

Recent developments in the theory of irreversible investment under uncertainty
can explain the existence of inertia in a remarkable variety of scenarios, both
economic and purely social. In particular, standard Marshallian investment rules
have been shown to be sub-optimal because they ignore the benefit of waiting in
an uncertain environment. Dixit and Pindyck (1994) provide seminal coverage.
Given this setting, Section 2 constructs a simple expository framework to help
analyse the relationship between interest rates and aggregate investment. It does
so by comparing intertemporal expected net present values in a discrete-time
model in which a firm has a two-period window of opportunity. This approach
is of some interest in its own right on two counts. First, it extends the analysis to
the Gaussian random walk.! Second, tractability is enhanced: the costs and
benefits of waiting can easily be identified, and there is no need for stochastic/
differential calculus. Section 3 then shows that the effect of interest rates on
aggregate investment can be counter intuitive. In particular, model investment
tends to zero at both high and low interest rates. That is, investment is a hump-
shaped function of the interest rate. Model assumptions are then relaxed, and
policy implications are discussed. A Coda and Appendix follow.

! While a geometric Brownian motion for net revenues allows firms to make unboundedly large gains, it
assumes that firms never make operating losses. This is sometimes modified by subtracting a fixed cost
per period, so that losses have a precisely known lower bound. This is still unrealistic, since in reality
firms do make unexpected losses. By contrast, a Gaussian random walk resolves this problem by allowing
net revenues to become unboundedly large or small, with infinitesimal probability.



COLIN ROSE 627

2. Model

There are three central elements to such analyses. First, the investment must
involve an irreversible expenditure, the size of which is K. This expenditure
yields an infinite sequence of net revenues (R,). Second, there must be some
uncertainty—here net revenues are stochastic, and follow a discrete time random
walk

Ry =R +ey (1)
where € ~ N(0, 07) (Gaussian White Noise).

Third, the firm can delay its investment. In particular, we consider the case
where the firm is able to delay investment by a single period of time, of arbitrary
length. That is, the firm owns a two-period window of opportunity within which it
can invest. The decision to invest is thus an intertemporal one: either invest today,
or wait one period until tomorrow and then decide again given the new informa-
tion set. Let I, denote the expected net present value of investment today; let I;
denote the expected net present value of investment tomorrow, given that we only
invest tomorrow if it is viable to do so, and given tomorrow’s information set;
finally let If denote I, conditional on today’s information set. To emphasise that
the results have nothing to do with risk aversion, it is assumed that firms are risk
neutral. Then, the optimising firm should

Invest today iff I > I
Wait 1 period iff If > I,

(2)

By contrast, the Marshallian risk neutral firm invests today if the project has a
positive net present value. That is, it will invest if I, > 0. Let future revenues be
discounted at a positive rate r, the opportunity cost of riskless capital, set exogen-
ously by policy. Then I, and I; may be expressed as

R
R 1 LK if Ry > 1K

Ih=——-K I =
0 r ! 147

(3)

r
0 if Rt+l < rK

R;,; is not known at time t. However, the distribution of R, ; is known, and is
given by equation (1) as R, ~ N(R,, 0?) with pdf ¢(R,, ) and distribution func-
tion ®(R,, ;). Hence, we can calculate the expectation of I; conditional on infor-
mation at time ¢, which yields If. Note that I, is equivalent to the payoff of a call
option, whereas It is equivalent to the value of this call option. As R, — oo, the
Prob [R,; > rK] — 1. It then follows from (3) that as

1 R
&—%m,ﬁ—n+¢E{f4—K}_hﬂl+ﬂ
Similarly, as R, — —o0, Prob [R,.; < rK] — 1 and I} — 0. We now have sufficient
information to qualitatively plot both I, and I¥, as illustrated in Fig. 1.2

? The Mathematica package Bounded.m was used to generate diagrams. It is available in Rose (1993),
and as item 0205-399 on MathSource <http://www.mathsource.com/>.
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Fig. 1. The expected NPV of investing today and tomorrow

Let R,, denote the value of R, at which I, = 0, and let R; denote the value of R, at
which I = I,. Then a Marshallian firm invests if R, > R,, = rK, while an optimis-
ing firm invests if R, > Ry. Since I} is necessarily positive, it follows that I, must
also be positive when If = I, and hence that

R; >R, (4)

Then there must exist a non-empty set S = {R,: R,, < R, < R;} within which
Marshallian investment rules are strictly sub-optimal: if R, € S, Marshallian rules
state ‘invest today’, whereas optimality prescribes waiting one period and then
evaluating the problem again given the new information set (as per (2)). The
problem of whether or not to wait one period really amounts to evaluating the
benefits and costs of waiting one period. Referring to Fig. 1, it seems quite natural
to define

I
C = (expected) Cost of Waiting = I — —
IL+r
I
B = (expected) Benefit of Waiting = If — I —I(i >0
r

More formally, if investment is to take place, waiting is costly because it delays the
expected income stream by one time period. An investment today yields an
expected income stream with NPV of [. If, however, we wait one period and
then make the same investment, we expect to receive the identical income
stream, but now delayed by one time period (the NPV of which is I/(1 +r)).
The benefit of waiting is that, in doing so, we can avoid potentially poor
investments, at least in the light of newly received information. The appropriate
investment rule is now

Invest today iff C > B
Wait 1 period iff B> C

()
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Fig. 2. The benefits and costs of waiting

Note that rule (5) is formally equivalent to rule (2), since B = C if and only if
It = I,. Also note that the Marshallian risk neutral firm will always invest today if
the cost of waiting is positive (C > 0 iff I, > 0). This is just the well-known result
that Marshallian investment rules are suboptimal because they only consider the
cost of waiting; all benefits are ignored. Figure 2 illustrates the benefits and costs
of waiting. Note that when net revenues R, are small or negative, the benefit from
waiting is large, and the cost small (in fact negative) so that waiting is optimal.
Contrariwise, when R, is large, the benefits from waiting are small, and the costs
large, such that waiting is not viable. As o increases, the B curve shifts out and
to the right, causing R; to increase. By analogy with option pricing, these results
are expected, for as is well known, the value of a call option is an increasing
function of o.

An explicit algebraic expression for If can be derived quite easily.” To do so, note
that eq. (3) implies that

1 [*/R
If = - rjﬂ(( - K) P(Res1)dR, 4 (6)
As shown in the appendix, this integral may be expressed as
1
1 = - - 20k + o0k) -0 (o)
2

By providing an explicit form for I¥, eq. (6)* makes it possible to plot I} with I,
in real examples.

3. The hump-shaped relationship

Instead of but one investor, suppose that at any time ¢, there exists a pool of
potential investors. For simplicity, firm #’s decision to invest is assumed indepen-

* More broadly, dynamic programming will yield a general solution when the firm’s window of oppor-
tunity exceeds two periods, but with consequential loss of elegance.
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dent of firm j for all i # j: for instance, each investor i may have monopoly rights in
geographic area i. As before, all firms can make an irreversible expenditure K which
yields a stochastic sequence of net revenues (R,). Equation (1) becomes
1 =R +e

where & ~ N(0,0?) and where ¢ now denotes industry-level exogenous shocks.
We introduce heterogeneity by allowing different firms to have different current
revenues Ri, just as empirically, one observes a distribution of returns across an
industry. In this vein, let the distribution of R! across the pool of potential investors
be given by G(-) defined over [6;,6,] for , > 6, > 0.* We can now contrast two
different worlds: a Marshallian world in which firms use Marshallian decision rules,
and an optimising world in which firms take into account the benefit of waiting.
Then, the proportion of firms P € [0, 1] investing at time ¢ is given by

P; =1— G(Ry) in an optimising world
and by
P, =1-G(R,) in a Marshallian world.

Several results then follow:

Proposition 1 If investment is irreversible and uncertain, and firms behave
optimally, then the level of investment is always smaller than Marshallian rules
suggest.

Proof R; > R, (by (4)). Thus, P; < P,,. O
Proposition 2 As r — oo investment tends to zero in both worlds.

Proof Asr — o0, R,, = rK — oo and thus P,, — 0. Hence P; — 0 (by Proposition

1). (]
. (i) Marshallian investment tends to unity

Proposition 3 Asr — 0

(ii) Optimal investment tends to zero

Propositions 1 and 2 are well known. By contrast, Proposition 3 is somewhat
surprising. Its Marshallian component (i) is of course trivial, since as r — 0,
R,, — 0, and thus P,, — 1. To derive the optimising component (ii), it helps to
think in terms of the costs and benefits of waiting, and to evaluate the limit of these.
It is easy to show that as r — 0, C — R,. This is also intuitive: recall that waiting is
costly because we delay the expected income stream by one period. If r = 0, the
future is not discounted, so the cost of waiting one period is just the net revenue
forgone in that period which is R,. While the cost of waiting tends to R, (finite) as
r — 0, the benefit of waiting tends to infinity (proof below). Hence, as r — 0, it
always pay to wait and thus investment P; tends to zero.

* G(-) is defined with positive support because we constrain our interest to the potential set of entrants.
Given K > 0, a firm is defined to be a potential entrant if there exists some combination of r, & > 0 at
which a firm with current revenues Ri would invest. Under model assumptions, no such combination
exists for firms with negative current revenues.
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Fig. 3. Optimising investment and Marshallian investment
To prove linéB =00
Recall B = If o 1A here H = 0”¢(rK) — (R, — rK)®(rK) by (6)*
= ——= —| w =0 — (R, — .
Yol4r 141y ! Y
Hence, lil‘l(l)B = oo if lin&H >0 where lingH = 0”¢(0) — R,®(0). The Appendix
0
shows that E[R,.1|R,;; < 0] =R, — 0” % < 0. Hence linéH > 0. O

Since R,, = rK, it is clear that P,, is a decreasing function of r, as per standard
analysis. By contrast, Propositions 2 and 3 combined suggest that P; is a hump-
shaped function of r. Figure 3 illustrates this surprising result. In this example,
K = 2,500, 0 = 500 and G(-) is uniform over [0, 1,000]. As per Proposition 1, the
optimising investment curve always lies below the Marshallian curve.

3.1 Explaining the hump intuitively

The right-hand-side of the hump is of course intuitive: as r — oo, the present value
of cash inflows tends to zero rendering projects unprofitable. The left-hand-side of
the hump is less intuitive, but we do know that it arises formally because the benefit
of waiting tends to infinity as the discount rate tends to zero (see proof above).
Thus, to understand the hump intuitively, all we have to do is explain why B — oo
as r — 0. In doing so, it helps to think in terms of the distribution of payoffs
(denoted by y), instead of the distribution of net revenues. Let y, = R,/r — K where
R, is known at time ¢. Similarly, let y,.; = R, /r — K where R,.; ~ N(R,, 0*) and
thus y,.; ~ N(y,,0°/r*). By waiting one period, we censor this distribution of
future payoffs, reducing the downside risk while leaving the upside potential
(¥:41 > 0). To make this absolutely clear, we can re-express (3) as follows
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Fig. 4. Censoring becomes important as the variance increases

1 Yerr iy 20
Iy =y I = .
I+r (0 if y,,1 <0
As the variance of y,,| increases, the benefit of censoring increases: more of the
distribution is pushed into the tails, causing the upside potential to increase, but
with minimal effect on the downside (see Fig. 4). It follows that as r — 0, this
benefit must tend to infinity, since y,,; ~ N(y,,0°/r%).

3.2 Policy implications

If investment is irreversible and uncertain, then the interest-rate effects of policy are
complex. One can perhaps imagine embedding the investment hump into the basic
IS-LM macro model to give a hump-shaped IS curve which is positively sloped at
low rates of interest. In this perverse region, expansionary monetary policy lowers
interest rates and output, while expansionary fiscal policy encourages economic
activity both directly, and indirectly through higher interest rates.” The implica-
tions are perhaps reminiscent of the Keynesian liquidity trap, though rather more
perverse. At the very least, by Proposition 1, monetary policy is always less effective
than Marshallian rules suggest. By contrast, there exist other policy initiatives that
are more effective; whereas monetary policy moves one around a given hump
contour, policies that reduce uncertainty ¢ not only increase the magnitude of
the hump, but shift the peak to the left, thus reducing the domain over which
the effect of interest rates on investment is perverse.’ Figure 5 illustrates. As per
Fig. 3, K = 2,500 and G(+) is uniform over [0, 1,000].

3.3 Generalising the results

We consider six extensions:

(1) The censoring argument above is quite general; it is not distribution specific.
(ii) For expository reasons, we assumed the firm can delay its investment by one
period of time, of arbitrary length. That is, our firm had a simple 2-period window

° This assumes the LM curve is (locally) flatter than the IS curve.

® From p. 3, we know R; is increasing in o; hence, P; decreases with o.
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Fig. 5. Optimal investment at different levels of uncertainty

of opportunity. Proposition 3 then showed that as r — 0, Pi= — 0 where n
denotes the size of the window. In fact, the hump holds for all n > 2. The proof
is easy (by induction):

To prove asr — 0, Pj — 0V m; n={2,3,4...}

By Proposition 3, as r — 0, Pj=> — 0. It is then sufficient to show that Pj™" < P
Our firm holds an option—an option to wait (n — 1) periods before committing
itself. By virtue of the owner’s right of exercise, the value of this option must be a
non-decreasing function of #, just as the value of a call option is a non-decreasing
function of the time to maturity. It follows that R*' > R} and .".Pj™ < Pj. [

(iii) This paper has shown that as r — 0, B — oo. This is a sufficient condition
for a hump to exist. However, it is not necessary for B to become infinite, and this
is easy to show:

The most that firm i can lose by waiting is its current net revenue Ri, 50 C; < RLVi.
Since the distribution of potential investors has support R € [, 0,], it follows that
C; < 0,Vi. Thus, if B > 6,, there is zero investment. .". B does not need to grow to
infinity to achieve this result.

For instance, in Fig. 5, 6, = 1,000. This important distinction between necessary
and sufficient conditions establishes the framework for extensions (iv) and (v).

(iv) In the usual expository fashion, model investment (once made) was
assumed to be infinitely lived. This generates the 1/r on the RHS of eq. (3), and
allows one to neatly prove that B > C, as r — 0. If investment is finitely lived, B
and C are both finite, so one can no longer claim unambiguously that B is necess-
arily always larger than C. Nevertheless, as r — 0, the same censoring principles are
at work, striving to produce the same hump-shaped result, and provided the
project is sufficiently long-lived, r will have sufficient leverage to generate the
hump. Note that a project’s life does not need to be particularly substantial for
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Fig. 6. Optimal entry and exit

it to have similar leverage (at the margin) to even an infinitely lived project. For
instance, the NPV of an annuity of $1 for m periods is

m
Zim)=> (147"
=1
If r = 0.1, Z(oco) = $10 whereas say Z(25) = $9.077: not dissimilar to the infinitely
lived project.

(v) What if our firm not only has an option to enter, but also owns an option to
exit which it can exercise by paying an exit fee F > 0 if events turn out badly?
We then have two intertwined option pricing problems which need to be solved
simultaneously. This is a non-trivial exercise that does not permit closed form
solutions. Numerical methods are then required, and the end result is then example
specific. Nevertheless, the essence of such a model is well known from the principles
of irreversible investment: corresponding to the Marshallian entry (Ri"™) and exit
(RE4" — _rF) trigger points, there will now exist optimising entry (Rgnm/ > RyMY)
and exit (R < REXY) points that do take into account the benefit of waiting.’
Figure 6 illustrates.

Is there then a residual benefit of waiting when firms have an option to exit? Yes!
An option to exit only guards against outcomes in the Exit Zone (in which case we
still make a loss of K + F). By contrast, the benefit of waiting strives to avoid all
potentially poor investments: that is, it attempts to avoid both the Loss Zone in
Fig. 6 and the Exit Zone (a potential saving of K + F).* Thus, if a firm has an
option to exit, its worst case scenario is to lose K 4 F, so that an upper bound on
the benefit of waiting one period is (K + F)/(1 + r). Thus, in Fig. 2, as R, — —o0,
B will now tend to (K + F)/(1 4 r) rather than oo, as Fig. 7 illustrates.

Two implications can be drawn: On the one hand, B and C will both be finite
again, so one can not claim unambiguously that B is always larger than C as r — 0,
just like extension (iv). On the other hand, we know from extension (iii) that B
does not need to be infinite to generate a hump, and therefore neither does F. For

" Note that RE is always strictly negative. This is because even in the special case of costless exit
RE — 0, the firm will still optimally choose to incur some running losses rather than exiting (since
K > 0).

8 Note that an exit option does not necessarily prevent firms from making negative losses into perpetuity.
After all, in order to exit, the firm pays an exit fee F which is itself tantamount to receiving a negative
payoff of R, = —rF into perpetuity. It is not the duration of the loss that is critical, but its net present
value.
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Fig. 7. The benefit and cost of waiting (with and without an exit option)

any given cost of exit F > 0, hump-shaped relationships will always exist, but will
now depend on the example and in particular on o, F, and the distribution of R!
across the industry. As F tends to 0, such examples may become special.

(vi) Risk aversion: In our world of risk-neutral agents, the optimising firm
invested if R, > R;. If agents are now risk-averse, they will require an additional
risk premium 6, so that investment only takes place if R, > R; + 6. Consequently,
there will be even less investment than in the risk-neutral case described above.

4. Coda

This paper adopted a discrete-time continuous state space model to simplify
the analysis of irreversible investment under uncertainty. This model showed
intuitively that waiting has benefits as well as costs. As the benefits are non-
linear, the effects of interest rate policy on investment can be complex. In
particular, the paper showed that model investment tends to zero at both high
and low interest rates. The latter is surprising, and can be explained as follows. By
waiting, we censor potentially bad pay-offs, whilst retaining the upside gain. As the
interest rate becomes small, the variance of the payoff distribution becomes large,
and thus so too must the benefit of waiting. By contrast, the cost of waiting grows
more slowly, so that it eventually pays to wait. Model investment is then a hump-
shaped function of the interest rate.

Adding an option to exit and/or shortening the length of the income stream
reduces this variance and so may dilute the hump-effect. By contrast, the variance
increases with the length of a firm’s option to wait, which will exacerbate the hump.
Further, the more risk averse the firm, the greater is the premium required to
compensate for this variance, which will also accentuate the hump. It remains
for the empirical significance of the hump to be tested. This serves as an intriguing
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topic for future research, especially in view of the important implications such
work has for economic policy.
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Appendix

Let Z ~ N(0,1) with pdf h(z) and distribution function H(z). Let X ~ N(u,0?) with
X —

pdf ¢(x) and distribution function ®(x). If Z =

(i) o(x) = @

(if) ®(x) = H(2)
(iii) by direct integration J zh(z)dz = h(z) — h(Z)

#’ one can show that

By using the change of variable x = ;1 + oz, it follows that

X Z z X— U
J xp(x)dx = J (1 + 0z) h(z) (0dz) applying (i), with z = e

2 o o

=u Jz h(z)dz + or zh(z)dz

K4 z

= u[H(z) — H(2)] — o[h(z) — h(z)] applying (iii)

— 1[®(%) — ®(x)] — 0[6(x) — 6(x)] applying (ii) and (i)
Thus, if R,; ~ N(R;,”) two results follow. First:
|| ReoRdR =R - 0050+ 60K) setx=rKix=o0) (A
The ;ransition from (6) to (6)" is then straightforward. Second:

0
E[R41|R sy < 0] = ﬁj, Rip1(Risy)dR,y = R, — az% (set x = —00,% = 0)

(A2)
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