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Equilibrium and adverse selection

Colin Rose*

The nature of equilibrium in markets with adverse selection evoked considerable interest
Sfollowing George Akerlof’s seminal article on the market for lemons. Akerlof argued that
markets with adverse selection may yield no equilibrium. Charles Wilson has subsequently
argued that multiple equilibria may result. In this article it is shown that if the distribution
of quality follows some standard distribution, then a unique equilibrium will result.

1. Introduction

® In his seminal article on the market for lemons, Akerlof (1970) illustrates how a market
with adverse selection may lead to market breakdown. In follow-up articles, Wilson (1979,
1980) provides a framework for the analysis of markets with adverse selection, and these
represent the state of the art in lemon-style models. In particular, Wilson argues that markets
with adverse selection may be characterized by multiple stable equilibria. Multiple equilibria
are of particular interest in the Akerlof-Wilson model, for it can be shown that if such
equilibria exist, they can always be ranked according to the Pareto criterion in order of
ascending price: that is, both buyers and sellers always prefer higher-price equilibria to lower
ones. Such results are surely impressive. Moreover, they have crossed the Rubicon from
journal to postgraduate text.'

This article assesses the likely nature of multiple equilibria under adverse selection. I
show theoretically that the existence of multiple equilibria depends critically on the distri-
bution of quality. I then illustrate, using computationally intensive numerical techniques,
that multiple equilibria are highly unlikely if quality follows some standard distribution.
Instead, a unique equilibrium is always obtained.

From a methodological point of view, this approach is perhaps interesting in itself.
Typically, economic models are evaluated by somehow linking them to the real world.
Whereas this evaluation process is usually empirical, in this article it is, in essence, concep-
tual—all that is required is that the real-world distribution of quality be well approximated
by a standard probability density function. Given this assumption, the model can be tested
using numerical techniques made possible by recent advances in computer software and

* University of Sydney.

Jeff Sheen, Alan Woodland, and Don Wright provided helpful insights. I am grateful for comments by Ken
Judd and an anonymous referee.

! For instance, Phlips (1988) devotes over ten pages to discussing Wilson’s article, whereas Tirole (1988)
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hardware. By adopting this numerically intensive distributional approach, one can maintain
the conceptual relevance of the model without limiting oneself, for instance, to a specific
dataset as per empirical evaluations.

The article is structured as follows. Section 2 presents the Akerlof-Wilson model. Sec-
tion 3 shows theoretically that the existence of multiple equilibria depends critically on the
distribution of quality. Section 4 illustrates numerically that if quality follows some stan-
dard distribution, then multiple equilibria are most unlikely. Section 5 extends the results.
Section 6 provides concluding comments.

2. The Akeriof-Wilson model

m  Akerlof considers a market with asymmetric quality information: buyers are unable to
ascertain the quality of goods (used cars) before they purchase, whereas sellers are aware
of the quality but have no way of making buyers believe them. As is standard in this literature,
the absence of signalling and search is assumed. Each agent has the following utility function:
U= Ul(c, nlt, q) = ¢ + tgn, where c is consumption of other goods, » is a discrete binary
variable representing consumption of used cars (n =0 orn = 1), ¢ € [qo, ¢;] is the quality
of the car consumed with density f(g), and ¢ € (1, ;) is a parameter that measures the
relative valuation of a car of quality ¢ for consumption of other goods, with density A(¢).
Finally, let p denote the price of used cars, and let the price of other goods be unity.

O The supply side. As per Wilson, all sellers/owners are assumed to have the same valuation
parameter ¢ € (1g, t;), which we denote by 7. Ownership implies that sellers know the quality
of the cars they own, so sellers simply max., U = ¢+ Iqn subject to an income constraint.
Equating the marginal rate of substitution with the relative price ratio yields iq = p, where
q€ [40, g:]1. Hence, for an owner with car of quality g, the condition for posmve supply
is g < p. Stated differently, an owner will sell her car if and only if ¢ < p/7. Then, at any
price, the supply of cars may be thought of as the proportion of cars for which this is true:

p/t

flaydg  for  p>ig

S(p)=prob(qS=)— % (1)

0 otherwise.

As per Wilson (1980), the average quality of cars at price p is
p/t
f qf(q)dq

“p)=Elqla<%)=———forp>Tg (2)

qa\p - ! S(p) 0>

where E is the expectations operator.

0O The demand side. The very essence of a lemons model with asymmetric quality infor-
mation is that buyers are unable to ascertain the quality of goods before they purchase.
Since buyers cannot choose ¢, they maximize expected utility. Thus, the problem for buyers
is to max,., U® = ¢ + tg°n subject to an income constraint (where g is given by (2)).
Equating the marginal rate of substitution with the relative price ratio yields tg° = p. Hence,
the condition for positive demand is 1qg® = p. Then, at any price, the demand for cars may
be thought of as the proportion of buyers for which this is true:

{1
)2 f h([)dt for p< tha(p)
D(p) = prob (z > — ) =4 Yrravw o
() 0 otherwise.
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3. The distribution of quality and multiple equilibria

B From equation (1), we see that the supply curve is monotonically increasing in price.
Hence, the possibility of multiple equilibria requires that the demand curve cut the supply
curve in at least two places ( practically three). This in turn implies that the demand curve
must contain an upward-sloping segment, in addition to the standard downward-sloping
segment. From equation (3), we can determine the condition for an upward-sloping demand
curve:

dD(p)
dp

. . dlp/q*(p)] _ 1 dg“(p) p
>0 ifandonlyif ———=—|1-— <0.
dp q dp  q°(p)

If we denote by ¢ the price elasticity of average quality, then the requirement for an

upward-sloping demand curve is simply
d a

_ 4dq°(p) Py

dp  q°(p)

Summarizing the above conditions, and deriving & using equation (2), one obtains
after a few lines of less than pretty algebra:

D D
‘ ol
dD(p) Y

i =0 ifandonlyif e¢=1, where ¢ = — {
fq)dq

pll
q°(p)

1]. (4)

~

qo0

The result for € is not quite as meaningless as it might at first seem. As can be seen
from Figure 1, the first part of ¢ (the fraction) is simply the area bound by the rectangle,
divided by the (shaded) area bound by the curve. All we can say about the second part
(within the brackets) is that it must necessarily be nonnegative, because ¢ itself must be
nonnegative.? Unfortunately, these insights do not tell us whether ¢ Z 1, and hence I adopt
numerical techniques (see Section 4). In doing so, I note from equation (4) that the existence
of multiple equilibria will depend critically on the distribution of quality f(g).

4. Multiple equilibria are most unlikely

B The central issue is to determine whether ¢ = 1. By applying numerical methods to
equation (4), I derived computer-generated plots of € versus p for the standard frequency

FIGURE 1

~o

2 From equation (2), g% is nondecreasing in price. Hence, dg°/dp = 0. Since p and ¢ are necessarily nonnegative,
it follows that ¢ is also nonnegative.
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distributions, each of which underwent a systematic and comprehensive test of different
parameter values.

The distribution function of many distributions cannot be expressed without an integral
sign. This is, of course, the raison d’étre for the tables found at the rear of statistic texts.
The same applies to the calculation of ¢g?. In such cases, numerical integration techniques
may be used. I originally performed the calculations using 7#eorist on a Macintosh Quadra.
This work was tested and then replicated with Mathematica, following the release of ver-
sion 2.2 The basic approach using Mathematica is lucid yet extremely flexible, and I illustrate
it in Appendix B. More generally, the files that generated the diagrams in this article are
available from the author.*

Numerical work is simplified in two respects. First, note that preferences can be ignored
since A(t) does not enter equation (4). Second, note that the lower and upper bounds for
quality g € [gy, ¢:] do not need to be chosen—rather, these bounds are prescribed by the
domain of each distribution. For instance, if quality follows a lognormal distribution, then
0 < g < o0, so that g, = 0, g; = co. The domain of each distribution is provided in Fig-
ure 2. The results are somewhat surprising, if only for the consistency of each distribution,
irrespective of the chosen parameters. Table 1 lists the frequency distributions that were
tested and provides a summary of the results.

Typical plots of € versus p for the gamma, chi-squared, exponential, lognormal, and
normal distributions are illustrated in the middle column of Figure 2, with their probability
density functions. I use the word “typical” because the analysis suggests that it is not possible
to generate plots of e versus p that are qualitatively different from those illustrated, irrespective
of the parameters chosen. This can easily be seen by means of a 3D plot, by plotting price
on the x-axis, the distribution’s parameter on the y-axis, and the elasticity on the z-axis. Of
course, this only works if the distribution has but one parameter. For distributions with
two parameters, it seems sensible to hold the location or scale parameter constant and vary
the shape parameter, and this technique is used where necessary in Figure 2. The beta
distribution B(«, 3) is capable of producing somewhat more diverse results, and Figure 3
illustrates these (8 > 1, 8 = 1, 8 < 1, each with varying «). The uniform distribution is
captured via a beta distribution B(«, 8) with & = 1 and 8 = 1 (see center graph in Fig-
ure 3).

TABLE 1
Distribution Conditions e<l e=1 e>1
Gamma v
Chi-squared v
Exponential v
Lognormal v
Normal See below v v v
Beta (D B>1 v

2 g=1 v

3)B<l v
Uniform v

3 The version 2 release of Mathematica includes functions that describe the probability density function and
cumulative distribution function of common statistical distributions. This simplifies numerical work considerably,
for not only does it reduce the amount of numerical integration required, it also allows one to adopt a general
analytical framework that applies to all chosen distributions.

* The author’s Mathematica notebooks can be used on any computer utilizing the notebook interface. As
they are text files (ASCII), they can easily be sent by E-mail. Theorist files can be used only on a Macintosh.
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FIGURE 2
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FIGURE 3
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The central issue here is whether or not a distribution can generate multiple equilibria.
From equation (1), we note that the supply curve is monotonically increasing. By keeping
this in mind, and then referring to Table 1 and equation (4), it follows that

(i) € <1 Vp:Iff(q) follows a gamma distribution, then the demand curve is always down-
ward sloping (and never upward sloping), and hence it cannot generate multiple equilibria.
The same applies if f(g) follows a chi-squared, exponential,®> or lognormal distribution, or
even the beta distribution B(«, 3) for parameter 8 > 1.

(i1) € = 1 Vp: If f(q) follows a uniform distribution, or a beta distribution B(e«, 8) with
parameter 8 = 1, then the demand curve is perfectly elastic, and hence it cannot generate
multiple equilibria.

(ii1) & > 1 Vp: If f(q) follows a beta distribution B(e«, 8) with 8 < 1, then for p < £,g° the
demand curve is always upward sloping! (For p = t,4°, demand is zero.) Thus, both the
demand curve and the supply curve are upward sloping, and hence they may conceptually
generate multiple equilibria. However, this conceptual possibility is perhaps trivial, for three
reasons. First, when we look at the underlying probability density function of quality when
B8 < 1, we see that it is somewhat unrealistic (see the last column of Figure 3). Second, the
resulting demand curve will be similarly pathological: demand increases with price for
p < t1g°, while for p = t,q%, demand is zero and thus discontinuous. Third, actual plots of
demand and supply yield a unique equilibrium (diagrams are available from the author).
As such, I shall ignore the above conceptual possibility.

That leaves the normal distribution. As can be seen from Figures 2 or 4, the normal distri-
bution yields € > 1 for a low range of prices p € (0, p*), and thereafter ¢ < 1 for a higher
range of prices p € (p*, oo). In this example, p* =~ 3. By equation (4), this implies that
the demand curve is upward sloping for p € (0, p*) and downward sloping (or zero demand)
for p € (p*, o). Stated differently, the demand curve will be a hill-shaped function of price:
upward sloping at “low” prices, and downward sloping at ““high” prices, with a single hump
and a peak at p*. Moreover, this result holds irrespective of the distribution assumed for
preferences A(t), since preferences do not enter equation (4).

I wish to stress two points: first, of the distributions considered, a normal distribution
for quality is the only distribution that could possibly generate multiple equilibria, since it
is the only distribution that can yield a demand curve with both downward- and upward-
sloping segments. Second, if we then use this distribution, the resulting demand curve will
always contain a single hump. This is important, for it implies that the possibility of multiple
equilibria is quite remote. See Figure 5: on the left-hand side is a “reprint” of the demand

FIGURE 4

3 If the gamma distribution always yields & < 1 ¥ p, then so must the chi-squared and exponential distributions,
for they are just special cases of the gamma distribution.
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and supply curves as drawn by Wilson (1979, 1980). On the right-hand side, computer-
generated supply and demand curves are shown for the case where the distribution of quality
f(g) is normal,® and the distribution of preferences A (¢) is uniform,” although the latter is
irrelevant. Since supply is a monotonically increasing function of price (see (1)), whereas
demand is hump-shaped, and since demand must exceed supply at p = 0 (as per Figure 5),
it appears that multiple equilibria cannot be generated.

5. Extensions

B The above analysis can easily be extended to less common distributions. In particular,
one can use the framework provided in Appendix B to analyze the remaining distributions
in the Mathematica release. These fall into two classes:

1) For the half-normal, chi, Rayleigh, Student’s 7', FRatio, and Weibull distributions,
we find that ¢ < 1 Vp, irrespective of the chosen parameters. The results are qualitatively
identical to those of the gamma, chi-squared, exponential, and lognormal distributions, as
discussed above (see Figure 2).

2) For the extreme-value, Cauchy,® Laplacian, and logistic distributions, we find that

¢ > 1 for a low range of prices p € (0, p*), and thereafter € < 1 for a higher range of prices
p € (p*, o). The results here are qualitatively identical to those obtained for the normal

distribution (i.e., hill-shaped plots) as per Figure 4.

6 The parameters used here are the same as those in Figure 4. There I argued that there exists some p* at
which e changes from inelastic to elastic, and that in this example p* ~ 3. As expected then, we see in Figure 5
that at p ~ 3, the demand curve changes from upward sloping to downward sloping.

7 For this example I assumed ¢, = 1 and ¢, = 3, and hence that A(z) = .5.

8 To ensure accuracy, one must force Mathematica to use numerical integration here.
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As such, by arguments now familiar, these distributions will be unable to generate
multiple equilibria. Instead, a unique equilibrium will result, as discussed above.

6. Conclusion

B This article has assessed the likely nature of multiple equilibria under adverse selection.
The methodological approach involved computationally intensive numerical techniques.
The results indicate that multiple equilibria are extremely unlikely if quality follows some
standard distribution. Instead, a unique equilibrium is always obtained. Consequently, this
article finds no evidence to cause us to change the status quo of the unique equilibrium in
markets with adverse selection.

Appendix A

B Whereas the other distributions considered in Section 4 are distributed over (0, oo ), the normal distribution
is distributed over (—co, +c0). This raises two issues.

(i) Since our measure of quality cannot be negative, we make use of a truncated normal distribution, with
truncation at zero. This does not change the analysis (that is, equation (4) does not change), as is now explained.
Let f(¢q) denote a normal probability density function. We wish to find the average quality of cars at price p, but
now conditional on quality being nonnegative. Then,

~ s

q”(pl) = E(q!qo =¢g=

f,,:/; 4f(q)dq

s

o/t
fa)dg
40
where ¢q denotes the truncation point. But this is identical to equation (2). Hence, equation (4) does not change
(since equation (4) is derived from equation (2)).

(i) Thus far, we have established that the nonnegativity constraint (truncation) does not alter the analysis,
and equation (4) can be used as before. Nevertheless, some extra care must be taken, for when f(g) is normal, /(g)
approaches zero asymptotically in the tails. When dealing with these extremely small numbers, numerical integration
can potentially become prone to inaccuracy, and the extent to which this happens will depend on the digits of
precision specified, and the amount of floating-point round-off error, other things being equal. In this appendix I
derive the price elasticity of average quality € in terms of well-defined functions, such that numerical integration
becomes unnecessary, when the distribution of quality is normal. This serves as a useful check of the results. In
doing so, we proceed as follows:

O Standard normal distribution. Let Z be N(0, 1) with probability density function ¢(z) and distribution func-

tion ®(z). Let ¢ and d denote lower and upper truncations of this distribution respectively. By direct integration,

if Z is N(O, 1), then [ z¢(z)dz = #(c). Similarly, [° z¢(z)dz = ¢(d). Hence, ff zd(z)dz = ¢(c) — #(d).

d_ (o (o g (z) :¢(C)—¢(d)
Ui =12~ [F1 Thus ElZle = Z s d) = [ 2 g2 de = g St

O Generalizing to the normal distribution. Let Q denote the random variable of quality, where Q is N(u, ).

Then Z = g- N Q = u + oZ. From equation (2):
12
q*(plt) = E{QlO =Q 5‘1:;] (truncated at zero)
P
0—u —u 7_ﬂ
=u+ oE[Z|c< Z < d] where c= =—, d=
[ g [

ot [d)(C)—(b(d)} (A1)

°| a(d) — 2(c)
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Substituting (A1) into equation (4) yields:®

p9d)
_ I @ p/; _
TR - |, JHe) = <z>(d)] by (A2)
K9 %(d) — a(c)

Equation (A2) expresses'® the price elasticity of average quality ¢ in terms of the standard normal density
function and the standard normal distribution function. The latter may be expressed in terms of the error function
erf(-), which is found in many computer packages. Since ¢ is now expressed in terms of in-built functions, there
is no need for numerical integration. The use of these in-built functions thus serves as an important check on the
results obtained with numerical integration. There was no discernible difference between the in-built function
approach (equation (A2)) as opposed to the numerical integration approach (equation (4)).

Appendix B

B This appendix provides a simple yet general framework for numerical analysis of € (i.e., of equation (4))
within Mathematica (version 2 release or later). The approach is general, for it applies to all the distributions in
the Mathematica release. 1 shall proceed in four stages:

Step 1: Load package.

Inf] := <<Statistics’ContinuousDistributions’
Step 2: Specify the set of distributions. Here, 1 list the distributions discussed in Section 4. One can easily add others.

In[} := dl = GammaDistribution[alpha, beeta] ;
d2 = ChiSquareDistribution([v];
d3 = Exponentialbistribution|[ lambdal ;
d4 = LogNormalDistribution[mu, sig];
d5 = NormalDistribution[mu, sig]:
d6 = BetaDistribution [alpha, beeta];

Step 3. Choose a distribution; define elasticity € (as per equation (4)). From the above distributions, I now select
d2: the chi-squared distribution, as an example. Let £[ ] and F[ ] denote the probability density function
and cumulative distribution function respectively of the chosen distribution, let g0 denote ¢, let t denote 7, let
AQuality{[ ] denoteq?(-),andletElas[ ] denotee.

In[] :=
dist =42;
f[(g—] := PDF [dist, q]
F[qg_] := CDF[dist, q)
q0 :=Max [0, Domain[dist] [[1]] ]
AQuality[p—] = (N[Integrate[qflql, {q, 90, p/t}]1]1)/(F[p/t]—F[q0]);
Elas [p—] ((p/t) £{p/t]1/ (FIp/t]1—F{q0])) ((p/t)/AQuality[p]—1)

Mathematica will now try to express € in terms of in-built optimized functions such as the error, beta
regularized, gamma regularized, hypergeometric, second exponential integral, incomplete beta, and/or incomplete
gamma functions. These functions cannot be expressed without integral /summation signs. For some distributions,
Mathematica will not be able to express € in terms of these in-built optimized functions: in such cases, step 3 directs
Mathematica to resort to pure numerical integration (with machine precision internal computations here). If
numerical integration is necessary, the following output will appear:

°1 also make use of the following: if /(- ) is N(u, ¢2), then f(p) = #d) .

il e
10 Equation (A2) can also be derived from first principles (that is, without using equation (4) at all). To do
dg“(p) p

dp ¢“(p)’
derivation, however, is less than elegant.

50, note that by definition ¢ = Replace ¢“(p) with (Al), then differentiate and simplify. The
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NIntegrate::nlim: q = p/t is not a valid limit of integration.
Unfortunately, if numerical integration is needed, graphs may take ten or more times as long to plot.

Step 4: Specify parameter values and plot diagram. Appropriate parameter values must still be specified. Since I
am using the chi-squared distribution (d2) in this example, I must provide a value for its parameter v. In addition,
I must also specify a value for t and provide a suitable upper bound ! for the domain of the plot.

In|] :=
Block|[ {v=2, t =1, Upper = 15},
Plot [ {Elas([pl, £[p/t]}, {p, t g0 +1/100, Upper},
PlotStyle —> { {AbsoluteThickness [1.5]},
{AbsoluteThickness[0.2]} }] ]

This will yield diagrams similar'? to those shown in Figures 2 and 3. The choice of parameter values can be
automated, with multiple plots.
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carefully. Plotting the probability density function £ [p/t] on its own helps the user choose a suitable setting.
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