Section: |
A. Introduction
|
Dr Colin Rose
|
1288 =
1294 = -(1 × 2) + ! 4 ...
1296 = , , ,
1392 = (-(1+3)! + !!)2
1426 = -14 + (2 × 6!)
1432 = 1(-4 + 3!!)2 ...
1433 = -1 + ( × 3!!) - 3! , -1 + (3!! - 3) ... (prime)
1434 = (1 - 4 + 3!!) , ((1+)!! - 3) , ((-1+4)!! - 3) , -(1+)! + (3!! × ) ...
1435 = (1×× 3!!) - 5 , (1+)!! + 3!! - 5
1436 = -(1 × 4) + 3!! + 6! ...
1439 = -1 + (3 + )! , -1 + (-3 + 9)! , 1 - + 3!! + !! ... (prime)
1440 = (1+)!! + 0 , (-1+4)!! + 0 , 1(4 - 0!)!! ...
1441 = (1+)!! + 1 , (-1+4)!! + 1 (4 solutions: the other two being variations that follow from the symmetry of 1441)
1442 = (1+)!! + 2 , (-1+4)!! + 2 , (1 + (4!/4)!)2 , (1 + (4+)!)2 ...
1443 = (1+)!! + 3 , (-1+4)!! + 3 , 1 + + 3!! , -1 + 4 + 3!! , -1 + ( + 3!!) ...
1444 = (1+)!! + 4 , (-1+4)!! + 4 , , ((1+)!! + ) , ((-1+4)!! + ) ...
1445 = (1+)!! + 5 , (-1+4)!! + 5 ...
1446 = (1+)!! + 6 , (-1+4)!! + 6 , (1+)! + 6! , (-1+4)! + 6! ...
1447 = (1+)!! + 7 , (-1+4)!! + 7 ... (prime)
1448 = (1+)!! + 8 , (-1+4)!! + 8 ...
1449 = (1+)!! + 9 , (-1+4)!! + 9 , 1 + (4 + !!) , , ...
1463 = -1 + 4! + 6! + 3!!
1464 = 16! + 4! , (1 × 4!) + (6! × ) , (1+)!! + 6! + 4! , (-1+4)!! + 6! + 4! ...
1573 = (1 + 5!)(7 + 3!)
1673 = -1 - 6 + 7! / 3
1679 = -16 + 7!/ , -1 + (6! × 7)/ , 1 - (6 - 7!)/
1684 = + 8! / 4!
1704 = 4! , (1 + 70)4! ...
1764 =
1944 = 14 4! ,
GREEN numbers: require concatenation of digits RED numbers: factorials are not needed |